Дифференциальное исчисление функций нескольких переменных часть 2

461-470. Разложить данную функцию в ряд по степеням х и определить интервал сходимости получившегося ряда.

Данные к задачам 461-470

471-480. Найти решение уравнения 

1. Методом Даламбера, если в начальной момент t=0 форма струны и скорость точки струны с абсциссой х определяются соответственно заданными функциями (начальные условия)

2. Методом Фурье для закрепленной по краям струны длиной l, то есть, при граничных условиях U(0;t) =U(l;t) = 0 .

Данные к задачам 471-480

481-490. Методом операционного исчисления найти частное решение дифференциального уравнения, удовлетворяющего заданным начальным условиям.

Данные к задачам 481-490

491-500. Методом операционного исчисления найти частное решение системы дифференциальных уравнений, удовлетворяющее заданным начальным условиям.

Данные к задачам 491-500

521-530. Разложить данную функцию f(x) в ряд Фурье в интервале (a;b).

Данные к задачам 521-530

531-540 Найти изображение функции f(t).

Данные к задачам 531-540

541-550. Найти оригинал функции F(p).

Данные к задачам 541-550

551-560. Дано скалярное поле U(x,y,z).
а) Найти уравнения семейства поверхностей уровня. Построить поверхность уровня, проходящую через точку М.
b) Найти величину и направление наибольшего изменения функции в точке М.
с) Найти производную в точке М по направлению, идущему от точки М к точке N.
Установить характер роста (возрастание или убывание) функции в этом направлении

Данные к задачам 551-560

561-570. Для плоского векторного поля F найти уравнения семейства векторных линий. Построить векторную линию, проходящую через точку М.

Данные к задачам 561-570

571-580. Дано векторное поле  и плоскость Ax+By+Cz+D=0 (p), которая вместе с координатными осями образует пирамиду V. Пусть σ- основание пирамиды, принадлежащее плоскости (р); λ- контур, ограничивающий σ; n - нормаль к σ, направленная
вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность σ в направлении нормали n ;
2) циркуляцию векторного поля F АО замкнутому контуру λ непосредственно и применив
теорему Стокса к поверхности σ с ограничивающим ее контуром λ;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Гаусса-Остроградского. Сделать чертеж.

Данные к задачам 571-580

581-590. Проверить является ли векторное поле  потенциальным и соленоидальным. В случае потенциальности поля F найти его потенциал.

Данные к задачам 581-590

501-510. Решить задачи.
501. В первой урне содержится 13 шаров, из них 10 черных и 3 белых; во второй урне 20 шаров, из них 13 черных и 7 белых. Из первой урны наугад извлечен один шар и переложен во вторую. Найти вероятность, что шар, извлеченный из второй урны, окажется черным.

502. Работница обслуживает три машины. Вероятность того, что в течение некоторого времени первая машина не потребует внимания, равна 0,9, вторая- 0,8, третья- 0,7. Найти вероятность того, что в течение того же времени: 1) ни одна из машин не потребует внимания; 2) все три потребуют внимания; 3) только одна не потребует внимания.

503. Одинаковые детали обрабатываются тремя рабочими на трех станках. Вероятность брака равна соответственно 0,01; 0,002; 0,003. Обработанные детали складываются в один ящик. Какова вероятность того, что наугад взятая деталь будет бракованной, если производительности станков относятся как 2: 3: 5? (Каков процент бракованных деталей, производимых тремя рабочими?).

504. Вероятность хотя бы одного попадания при трех выстрелах равна 0,973. Найти вероятность трех попаданий при четырех выстрелах.

505. В группе из 10 студентов, пришедших на экзамен, трое подготовлены отлично, 4-хорошо, 2- удовлетворительно, 1 - плохою В экзаменационных билетах имеется 20 вопросов. Отличник может ответить на все 20 вопросов, хорошо подготовленный- на 16, удовлетворительно . на 10, плох- на 5. Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен: 1) отлично; 2) плохо.

506. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором- 10 белых и 10 черных шаров, в третьем ящике 20 черных шаров. Из выбранного наугад ящика вынимается один шар. Найти вероятность того, что этот шар окажется белым.

507.Известно, что 96% выпускаемой продукции удовлетворяет стандарту. Упрощенная схема контроля признает пригодной стандартную продукцию с вероятностью 0,98 и непригодную- с вероятностью 0,05. Определить вероятность того, что изделие, прошедшее упрощенный контроль, удовлетворяет стандарту.

508. 30% приборов собирает специалист высокой квалификации и 70 % - средней. Надежность работы прибора, собранного специалистом высокой квалификации 0,90. Надежнось прибора, собранного специалистом средней квалификации 0,80. Взятый прибор оказался надежным. Определить вероятность того, что он собран специалистом высокой квалификации.

509. Детали, изготовленные цехом завода, попадают на проверку их на стандартность к одному из двух контролеров. Вероятность того, что деталь будет признана стандартной первым контролером, равна 0,94, а вторым- 0,98. Деталь при проверке признана стандартной. Найти вероятность того, что эту деталь проверил первый контролер.

510. Вероятность того, что расход электроэнергии в продолжении одних суток не превысит установленной нормы, равна 0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.

511-520. Две независимые случайные величины X и Y заданы рядами распределения. Найти математическое ожидание и дисперсию величины Z

Данные к задачам 511-520

591-600. Задана плотность распределения f(x) случайной величины Х. Найти функцию распределения, математическое ожидание и дисперсию случайной величины Х, а также вероятность попадания Х на промежуток [а;b].

Данные к задачам 591-600

601-610. Измеряемая случайная величина Х подчиняется нормальному закону распределения с математическим ожиданием m и средним квадратическим отклонением σ. Найти симметричный относительно математического отклонения интервал, в который с вероятностью р попадает значение случайной величины Х.

Данные к задачам 601-610

Данные к задачам 601-610

611-620. Используя геометрические построения, решить задачу линейного программирования:

Данные к задачам 611-620

621-630. Используя симплекс- метод, решить задачу линейного программирования:

Данные к задачам 621-630

631-640. Записать таблицу истинности для формулы q:

Данные к задачам 631-640

641-650. По таблице истинности построить дизъюнктивную нормальную форму и упростить ее:

Данные к задачам 641-650

Данные к задачам 641-650


Ваша корзина пуста.

Мы в контакте

Моментальная оплата
Моментальная оплата
руб.
счёт 410011542374890.