Фильтрование основные схемы типовой автоматизации
Мокрая очистка газов
Разработка схем автоматизации мокрой очистки газов
Типовое решение автоматизации. В качестве объекта управления рассмотрим форсуночную трубу Вентури, в которой жидкость под небольшим давлением подается через распылитель, установленный параллельно газовому потоку, движущемуся с большой скоростью (рис. 4.14). Цель управления данным процессом аналогична цели управления процессом фильтрования газовых систем.
Рис. 4.14. Типовая схема автоматизации мокрой очистки газов:
1 - корпус трубы Вентурн; 2 - форсунки; 3 - регулируемая горловина.
Проведем анализ технологических особенностей мокрых пылеочистителей. Движение газового потока в трубе Вентури можно представить как движение газа через слой капель жидкости со скоростью, равной относительной скорости фаз. Из этого следует, что конечная концентрация пыли будет зависеть, во-первых, от числа и размера капель, определяющих качество «фильтра», и, во-вторых, от количества газа, движущегося через «фильтр», т. е. от расхода газа.
Жидкость дробится на капли в трубе Вентури дважды: на крупные - при истечении жидкости из форсунки и на более мелкие - под действием энергии газового потока. Конечный размер капель и их число определяются обоими процессами.
Средний диаметр капель после форсунки при распыливании определенной жидкости в газовый поток с малоизменяющими¬ся свойствами зависит от геометрических размеров форсунки и авления жидкости. Для одного из типов форсунок получено, например, следующее уравнение:
где dк-средний диаметр капель; dс-диаметр соплового отверстия; Рж - давление перед форсункой; k - постоянный коэффициент.
Таким образом, для стабилизации диаметра dк достаточно поддерживать давление Рт постоянным. Этим же будет обеспечиваться и постоянное число капель, так как расход жидкости Vт через форсунку определяется в основном перепадом давления Pк на форсунке:
где еР - коэффициент расхода (изменяется незначительно); Рж=Рж - Ргн;
Рг - давление газа в начале трубы, где установлен распылитель (мало изменяется) ; рш - плотность жидкости (мало изменяется) .
Дисперсность вторичного распыла - при контактировании капель жидкости после форсунки с газом - зависит в основном от скорости газового потока Wг:
где eс - коэффициент скорости (мало изменяется) ;
РГ - перепад давления в начале и в конце трубы Вентури (Рг=Рг.н - PГ. к), Рг. к - давление в конце трубы;
рг - плотность газа (мало изменяется).
Из уравнения следует, что для постоянства скорости Wг достаточно стабилизировать перепад давления на трубе Вентури. Регулирующее воздействие при этом вносится изменением поперечного сечения горловины трубы.
Перепад давления на трубе является движущей силой процесса перемещения газа, поэтому его стабилизация обеспечивает не только качественную дисперсность распыла, но и постоянство расхода газа - второго режимного параметра процесса мокрой очистки, определяющего показатель эффективности.
Итак, для эффективного применения труб Вентури необходи¬мо регулировать давление жидкости перед форсункой и перепад давления газа.
Мокрые пылеочистители склонны к забиванию, поэтому о достижении предельного значения перепада давления следует, кроме того, сигнализировать. При критическом значении перепада Р устройство защиты включает резервный пылеочиститель и отключает рабочий. Контролю в данном процессе подлежат расходы жидкости и газа.
Электрическая очистка газов
Типовое решение автоматизации рассмотрим на примере сухого электрофильтра (рис. 4.15).
Рис. 4.15. Типовая схема автоматизации электрической очистки газа:
1 - трансформатор; 2 - высоковольтный выпрямитель; 3 - электрофильтр; 4 - короннрующий электрод; 5 - реле максимального тока; 6 - реле минимального напряжения; 7 - автоматическое устройство управления; 8 - исполнительный механизм.
В связи с тем что электрические аппараты пылеочистки решают задачи, аналогичные задачам для фильтров и мокрых пылеочистителей, цели управления у них совпадают.
Параметрами, от которых зависит концентрация пыли на вы¬ходе из электрофильтра, являются: напряжение питания U, нагрузка G, температура газа I, радиус частиц r, давление газа Р, влажность m, удельное электрическое сопротивление R.
Для сухих электрофильтров получено уравнение, дающее представление о зависимости конечной концентрации Ск от указанных параметров:
где Сн - начальная концентрация пыли.
Из уравнения следует, что наиболее сильно на концентрацию Ск влияют начальная концентрация Сн, напряжение U и расход G; параметры Р, I, г влияют меньше, они определяются ходом предыдущего технологического процесса, и с их изменением в объект будут поступать возмущающие воздействия. То же можно сказать и о концентрации Сн. Расход газа с целью устранения возмущений нужно и можно стабилизировать. Напряжение U для высококачественной очистки должно поддерживаться на максимально высоком уровне, близком к критическому. Для этого устанавливают автоматическое устройство, которое периодически осуществляет плавное повышение напряжения до возникновения пробоя (дугового разряда) в межэлектродных промежутках. В момент возникновения пробоя срабатывают реле максимального тока и минимального напряжения; они дают команды автоматическому устройству на быстрое снижение напряжения и до значения, обеспечивающего гашение дуг («10%). Через некоторый промежуток времени устройство вновь начинает повышать напряжение до предельного пробивного значения. Затем цикл повторяется.
При обрыве коронирующих электродов сигнальное устройство через 5-10 циклов понижения напряжения дает импульс в схему сигнализации и защиты.
Рис. 4.16. Зависимость эффективности очистки от числа искровых разрядов.
Контролю в данном процессе подлежат расход, температура и влажность газового потока, напряжение и сила тока, температура масла трансформаторно-выпрямительного блока.
Регулирование по искровому принципу. Типовое регулирование электрофильтра по дуговому пробою имеет существенный недостаток - среднее значение рабочего напряжения оказывается ниже оптимального вследствие его периодического снижения. Более перспективным является регулирование по числу искровых разрядов, которые предшествуют пробою и определяют степень очистки (рис. 4.16). Оптимальная частота искровых разрядов может быть рассчитана заранее (как задание регулятору) по разрядному расстоянию, сочетанию электродов, свойствам очищаемых газов и другим параметрам процесса. Для контроля за текущим значением частоты искрений во вторичной цепи трансформатора устанавливают специальное устройство, реагирующее на импульсы напряжения, которые вызываются скачкообразными изменениями тока при искрении.
Типовое решение автоматизации для процесса фильтрования часть 1
Разработка схем автоматизации фильтрования
При исследовании процесса фильтрования жидких. неоднородных систем рассмотрим в качестве объекта управления барабанный (дисковый) вакуум-фильтр (рис. 4.12). Фильтровальные аппараты устанавливают, как правило, с той же целью, что и центрифуги, поэтому и цели управления в. обоих случаях совпадают. То же можно сказать и о возмущающих воздействиях, а также о выборе таких технологических и конструктивных параметров установки, которые обеспечили бы минимально возможную (для конкретных условий) влажность осадка. Устройства регулирования устанавливают на данном объекте только для обеспечения определенной производительности по осадку. Эта производительность для выбранного типа фильтра может быть выражена следующим образом:
где К - постоянный коэффициент; Р - разность давлений до и после фильт¬ровальной ткани; Ст.с - масса твердых частиц на единицу объема жидкости исходной суспензии; Сж.о - объем жидкости в осадке на единицу массы твердых частиц; п - частота вращения барабана (диска); I - часть барабана диска), погруженная в жидкость (определяется уровнем суспензии в ванне); f - кинематическая вязкость жидкости; а -среднее удельное сопротивление осадка.
Как следует из уравнения, производительность VТ пропорциональна (Р n l)0,5. Параметры Р и n не .изменяются при использовании асинхронных двигателей в качестве привода вакуум-насоса и барабана (диска). Поэтому единственным параметром, который следует стабилизировать, будет l, т. е. уровень суспензии в ванне. Регулирующим воздействием в данном случае служит изменение расхода суспензии.
Серьезной опасностью при работе вакуум-фильтров является прорыв фильтровальной ткани, так как через отверстия в ней будет теряться целевой продукт. Для предотвращения таких ситуаций устанавливают датчики мутности фильтрата, а также устройства сигнализации и защиты. Кроме того, на вакуум-фильтре устанавливают еще один датчик сигнализации и защиты - датчик перегрузки электродвигателя барабана.
Контролю подлежат расходы суспензии и фильтрата, уровень жидкости в ванне, разрежение в вакуум-линии, перепад давления до и после фильтровальной ткани, мутность фильтрата, мощность электродвигателя.
Регулирование толщины осадка. Толщина осадка является важнейшим режимным параметром. Увеличение толщины приводит к значительному повышению влажности осадка, поэтому целесообразна стабилизация данного параметра. С этой целью регулирующие воздействия могут быть внесены как изменением вакуума, так и изменением скорости вращения барабана. Необходимо отметить узкий диапазон возможных регулирующих воздействий в последнем варианте, что связано с увеличением влажности осадка при значительном повышении скорости вращения.
Фильтрование газовых систем
Типовое решение автоматизации рассматривается на примере рукавного фильтра с импульсной продувкой (рис. 4.13).
Рис. 4.13. Типовая схема автоматизации процесса фильтрования газовых систем: 1 - корпус фильтра; 2 - рукава; 3 - сопла импульсной продувки; 4 - шнек.
Рукавные фильтры устанавливают, как правило, для полной очистки газа от твердых веществ, являющихся ценным продуктом. Поэтому показателем эффективности процесса будем считать концентрацию твердого вещества в газе на -выходе из фильтра, а целью управления - поддержание его на заданном (минимально возможном для данных условий) значении.
Процесс фильтрования газовых сред во многом аналогичен процессу фильтрования жидких систем. В частности, аналогичны возмущающие воздействия и возможности их ликвидации. В рукавные фильтры дополнительно могут поступать возмущения по каналу сжатого воздуха, подаваемого в сопла для регенерации. Определенные сложности при автоматизации рукавных фильтров создает отсутствие в настоящее время надежных кон-центратомеров пыли. В связи с этим регулируют перепад давления ДР в камерах загрязненного и очищенного газа, который наиболее полно отражает ход процесса:
где РТ - перепад давления, обусловленный фильтрующей тканью и неудаляемыми частицами пыли; G - масса пыли, осевшей на единице площади фильтра за определенный промежуток времени; м - вязкость газа; W - скорость газа; К - проницаемость слоя пыли на ткани; р - плотность пыли; g - ускорение свободного падения.
Из уравнения следует, что регулировать перепад P можно лишь изменением массы пыли G, так как остальные параметры обусловлены ходом предыдущего технологического процесса. Регулирование осуществляется следующим образом. При достижении максимального перепада позиционный регулятор выдает сигнал на электромагнитные клапаны, установленные на магистрали сжатого воздуха. Клапаны открываются, импульсы сжатого воздуха через сопла поступают в рукава и деформируют ткань, сбивая при этом пыль. Регенерация ткани происходит до достижения минимального перепада давления.
Качественная регенерация фильтрующей ткани рукавов будет осуществляться только при определенном значении давления сжатого воздуха, подаваемого на продувку. Для стабилизации этого давления устанавливают регулятор.
Контролю и сигнализации подлежат следующие параметры: температура загрязненного газа (фильтровальная ткань рассчитана только на определенные температуры), давление сжатого воздуха, перепад давления. При критических значениях давления сжатого воздуха и перепада давления (превышение критического значения перепада приводит к разрыву ткани) срабатывает устройство защиты, отключающее рабочий фильтр и включающее резервный. Контролю подлежит расход газового потока.
Регулирование по жесткой временной программе.
Измерение давления газовых пылевых потоков связано с определенными трудностями, так как импульсные трубки забиваются пылью и искажают показания приборов. С другой стороны, при стабильном технологическом режиме появляется возможность отказаться от регулирования по перепаду Р и перейти на управление по жесткой программе, в которой задается определенная длительность импульсов сжатого воздуха и пауз между ними. Для реализации такой программы устанавливают командный прибор, который управляет объектом по временной программе независимо от состояния фильтра.
Фильтрование жидкостей
В качестве объекта управления при фильтровании жидких систем примем барабанный (дисковый) вакуумфильтр. Фильтровальные аппараты устанавливают, как правило, с той же целью, что и центрифуги, поэтому и цели управления в обоих случаях совпадают. То же можно сказать и о возмущающих воздействиях, а также о выборе таких технологических и конструктивных параметров установки, которые обеспечили бы минимально возможную (для конкретных условий) влажность осадка. Устройства регулирования устанавливают на данном объекте только для обеспечения определенного уровня суспензии в ванне. Регулирующим воздействием в данном случае служит изменение расхода суспензии.
Серьезной опасностью при работе вакуум-фильтров является прорыв фильтровальной ткани, так как через отверстия в ней будет теряться целевой продукт. Для предотвращения таких ситуаций устанавливают датчики мутности фильтрата, а также устройства сигнализации и защиты. Кроме того, на вакуум- фильтре устанавливают еще один датчик сигнализации и защиты— датчик перегрузки электродвигателя барабана.
Контролю подлежат расходы суспензии и фильтрата, уровень жидкости в ванне, разрежение в вакуум-линии, перепад давления до и после фильтровальной ткани, мутность фильтрата, мощность электродвигателя.
Регулирование толщины осадка. Толщина осадка является важнейшим режимным параметром. Увеличение толщины приводит к значительному повышению влажности осадка, поэтому целесообразна стабилизация этого параметра. С этой целью регулирующие воздействия могут быть внесены как изменением вакуума, так и изменением скорости вращения барабана. Необходимо отметить узкий диапазон возможных регулирующих воздействий в последнем варианте, что связано с увеличением влажности осадка при значительном повышении скорости вращения.