Лекции
Вопросы по ПАХТ и ответы
Цена за ответы по вашим вопросам от 100р
1. Охарактеризуйте ламинарное и турбулентное течения. Общие характеристики турбулентного течения. Изобразите, поясните и сопоставьте профили скоростей в трубопроводе при турбулентном и ламинарном режимах.
Прочитать ответ
2. Что такое гидравлический радиус и эквивалентный диаметр? Расчет эквивалентного диаметра в канале с некруглым сечением. Приведите примеры.
3. Вывод уравнения неразрывности. Какой вид имеет это уравнение при стационарном течении несжимаемой жидкости?
4 Вывод уравнения Навье-Стокса для одномерного движения. Каков физический смысл слагаемых?
5. Преобразование уравнений Навье-Стокса для покоящейся жидкости (Уравнения Эйлера, основное уравнение гидростатики. Закон Паскаля).
6. Вывод дифференциальных уравнений Эйлера для течения идеальной жидкости. Чем отличается идеальная жидкость от реальной?
7. Вывод уравнения Бернулли для идеальной жидкости. Приведите примеры практического использования этого уравнения. Опишите особенности движения реальной жидкости. Приведите вид уравнения Бернулли для реальной жидкости. Каков его энергетический смысл?
8. Вывод уравнения, представляющего энергетический баланс движения идеальной жидкости. Каков физический смысл слагаемых?
9. Принципы измерения скоростей и расходов жидкостей в трубопроводах, основанные на определении перепада давления
10 Приведите с необходимыми пояснениями расчетную формулу для определения потерь давления (напора) при течении жидкостей через трубопроводы и каналы. От чего зависит величина коэффициента трения?
11 Подобное преобразование уравнений Навье-Стокса для установившегося течения с получением обобщенных переменных (критериев гидродинамического подобия).
12. Подобное преобразование уравнений Навье-Стокса. Физический смысл критериев подобия.
13. Напор насоса, его энергетический смысл. Вывод формулы для расчета напора насоса
14. Вывод формулы для расчета высоты всасывания насоса. От каких факторов зависит допустимая высота всасывания насосов? Ответ обоснуйте анализом формулы для расчета высоты всасывания.
15. Как влияет температура перекачиваемой жидкости на предельную высоту всасывания насосов? Ответ обоснуйте анализом формулы для расчета высоты всасывания.
16. Полная и потребляемая мощность насоса. КПД насоса и его составляющие, их физический смысл, расчет мощности двигателя.
17. Характеристика центробежного насоса. Характеристика сети. Как определяют напор и мощность насоса при работе его на данную сеть.
18. Изобразите графики и сопоставьте зависимости между производительностью и напором центробежного и поршневого насосов.
19. Закон внутреннего трения Ньютона. Динамический и кинематический коэффициенты вязкости.
20. Расчет диаметра трубопровода, выбор расчетных скоростей потока и примерные численные их значения для жидкостей, газов и паров.
21. Уравнения теплового баланса при изменении и без изменения фазового состояния системы
22. Уравнения теплопередачи и теплоотдачи. Движущие силы этих процессов. Размерности и физический смысл коэффициентов теплоотдачи и теплопередачи.
23. Механизмы переноса тепла. Закон переноса энергии Фурье.
24. Опишите молекулярный механизм переноса энергии. Приведите уравнение для удельного потока теплоты.
25. Потенциал переноса энергии и массы. Вывод уравнения переноса.
26. Вывод уравнений теплопроводности через однослойные и многослойные стенки.
27. Вывод уравнений теплопроводности через цилиндрическую стенку для стационарного процесса. При каких условиях можно пренебречь кривизной стенки, сводя задачу к плоской стенки?
28. Перенос тепла конвекцией. Уравнение теплоотдачи. Подобной преобразование ДУ конвективного теплообмена Фурье-Кирхгофа. Критерии Фурье, Нуссельта, Пекле, Прандтля.
29. Физический смысл тепловых критериев Nu и Pr. Назовите примерные численные значения Pr для газов и капельных жидкостей.
30. Общий вид критериального уравнения для расчета коэффициента теплоотдачи при принудительной конвекции без изменения агрегатного состояния. Критерии подобия. Выражение соответствующих обобщенных переменных.
31. Критериальное уравнение для расчета коэффициента теплоотдачи при естественной конвекции. Критерий Грасгофа.
32. Как и почему влияет гидродинамический режим течения жидкости в трубе на коэффициент теплоотдачи? Профили изменения сжимаемости при ламинарном и турбулентном течениях.
33. Вывод уравнения аддитивности термических сопротивлений при теплопередаче с постоянными температурами теплоносителей для плоской стенки.
34. Связь коэффициента теплопередачи и коэффициента теплоотдачи при теплопередаче с постоянными температурами теплоносителей для плоской стенки. Каковы размерность и физический смысл этих коэффициентов?
35. Связь коэффициента теплопередачи и коэффициента теплоотдачи при теплопередаче с постоянными температурами теплоносителей для цилиндрической стенки.
36. Вывод уравнения для расчета средней движущей силы.
37. Взаимное направление движения теплоносителей. Сравнение прямотока с противотоком.
38. Влияние взаимного направления движения теплоносителей на среднюю движущую силу. В каких случаях средняя движущая сила не зависит от взаимного направления движения?
39. Определение температуры стенок теплообменных аппаратов. Зачем это надо знать?
40. Теплоотдача при конденсации. Пленочная и капельная конденсация. От каких параметров зависит коэффициент теплоотдачи при конденсации?
41. Теплоотдача при кипении. Общий вид уравнения для определения коэффициента теплоотдачи при кипении.
42. Зависимость коэффициента теплоотдачи при кипении от разности температур между стенкой и кипящей жидкостью и от удельной тепловой нагрузки.
43. Как определяется количество теплоты, передаваемой лучеиспусканием при взаимном излучении двух тел?
44. Определение потерь тепла стенками в окружающую среду.
45. Определение толщины слоя изоляции
46. Достоинства и недостатки топочных газов.
47. Водяной пар как теплоноситель.
48. Отвод конденсата при использовании водяного пара
49. Назовите и сопоставьте друг с другом основные теплоносители, используемые в химической промышленности для подвода теплоты.
50. Назовите и сопоставьте друг с другом основные теплоносители, используемые в химической промышленности для отвода теплоты
51 Применение высокотемпературных промежуточных теплоносителей. Области их применения. Примеры.
52. Порядок расчета поверхности теплопередачи теплообменников
Лекции
Рефераты и ответы на вопросы от 500р
Гидравлика – предмет изучающий законы движения жидкостей а также их свойства. Курс гидравлики состоит из 4-х разделов: - гидростатики, рассматривающей законы равновесия и состояние покоя жидкости; - гидродинамики, рассматривающей закономерности движения жидкости и движение тел внутри жидкости; раздела изучающего гидравлические машины; а также раздела рассматривающего гидромеханические процессы (разделение жидких неоднородных систем, перемешивание в жидкости).
Основные понятия:
Жидкость – тело, обладающее текучестью. Различают капельные и упругие жидкости. Для выводов аналитических зависимостей, описывающих закономерности движения жидкости используют также понятие идеальной жидкости – невязкой, несжимаемой и не меняющей плотность жидкости. Реальные жидкости обладают вязкостью.
Силы, действующие в жидкости. Различают 2 рода сил действующих в жидкости:
массовые, действующие на весь объем жидкости и направленные по нормали к поверхности жидкости. К ним относятся: сила тяжести, сила инерции, центробежная сила и сила кориолиса.
Поверхностные, действующие в плоскости поверхности жидкости. К таким силам относятся сила вязкости и сила поверхностного натяжения.
Гидравлика лекции скачать(300.33 Кб) скачиваний387 раз(а)
Закон сохранения массы
Суть закона сохранения массы заключается в том, что масса не может исчезать, либо возникать, т.е. суммарное количество массы в закрытой системе неизменно (закрытая не обменивается массой с окружающей средой), следовательно, DМ = 0 или dM/dt = 0. Рассмотрим закон сохранения массы для открытых систем.
Интегральная форма закона сохранения массы
(материальный баланс)
3.2 Закон сохранения энергии
Суть закона сохранения энергии состоит в том, что энергия не может исчезать, либо возникнуть, она лишь переходит из одной формы в другую. Таким образом суммарная энергия изолированной системы есть величина постоянная (изолированная система не обменивается с окружающей средой массой и энергией, не находится под воздействием внешних сил), т.е. dE = 0 или dE/dt = 0. Рассмотрим закон сохранения энергии для неизолированной системы.
Интегральная форма закона сохранения энергии
(первый закон термодинамики)
Локальная форма закона сохранения энергии
3.3. Закон сохранения импульса
Суть закона сохранения импульса состоит в том, что суммарный импульс изолированной системы есть величина постоянная , . Если же система находится под воздействием внешних сил, то производная от импульса системы по времени равна результирующей силе, действующей на систему.
Интегральная форма закона сохранения импульса
Закон сохранения массы и энергии скачать(31.66 Кб) скачиваний389 раз(а)
Виды процессов массопередачи. В промышленности применяются в основном следующие процессы массопередачи между газовой (паровой) и жидкой, между газовой и твердой, между твердой и жидкой, а также между двумя жидкими фазами:
Абсорбция — поглощение газа жидкостью, т. е. процесс разделения, характеризуемый переходом вещества из газовой фазы в жидкую. Обратный процесс выделения газа из жидкости называется д е с о р б ц и е й.
Экстракция (в системе жидкость — жидкость)— извлечение вещества, растворенного в жидкости, другой жидкостью, практически не смешивающейся или частично смешивающейся с первой. При этом извлекаемый компонент исходного раствора переходит из одной жидкой фазы в другую.
Ректификация — разделение гомогенных жидких смесей путем многократного взаимного обмена компонентами между жидкой и паровой фазами, движущимися обычно противотоком друг к другу.
Адсорбция — поглощение компонента газа, пара или раствора твердым пористым поглотителем, т. е. процесс разделения, характеризуемый переходом вещества из газовой (паровой) или жидкой фазы в твердую. Обратный процесс — десорбция проводится после адсорбции и часто используется для регенерации поглощенного вещества из поглотителя.
Разновидностью адсорбции является ионный обмен — процесс разделения, основанный на способности некоторых твердых веществ (ионитов) обменивать свои подвижные ионы на ионы растворов электролитов.
5. Сушка — удаление влаги из твердых материалов главным образом путем ее испарения. В этом процессе влага переходит из твердой фазы в газовую или паровую.
6. Кристаллизация — выделение твердой фазы в виде кристаллов из растворов или расплавов. Кристаллизация характеризуется переходом вещества из жидкой фазы в твердую вследствие изменения его растворимости.
7. Растворение и экстракция (в системе твердое тело — жидкость). Растворение характеризуется переходом твердой фазы в жидкую (растворитель) и представляет собой, таким образом, процесс, обратный кристаллизации. Избирательное растворение, предназначенное для извлечения того или иного компонента из твердого пористого материала, называется экстракцией из твердого, или выщелачиванием.
Теория массопередачи скачать(555.72 Кб) скачиваний346 раз(а)
Общие сведения
В химической технологии широко распространены и имеют важное значение процессы массопередачи, характеризуемые переходом одного или нескольких веществ из одной фазы в другую. Путем переноса одного или более компонентов из фазы в фазу можно разделять как гетерогенные, так и гомогенные системы (газовые смеси, жидкие растворы и др.), причем наиболее часто процессы массопередачи используют для разделения гомогенных систем.
Абсорбцией называется процесс поглощения газов или паров из газовых или парогазовых смесей жидким поглотителем – абсорбентом. Если поглощаемый газ – абсорбтив – химически не взаимодействует с абсорбентом, то такая абсорбция физическая, если же абсорбтив образует с абсорбентом химическое соединение, то такой процесс называется хемосорбцией. Физическая абсорбция обратима, выделение поглощаемого газа из раствора – десорбция. Сочетание абсорбции и десорбции позволяют многократно использовать поглотитель и выделять поглощённый газ в чистом виде.
Абсорбция применяется:
— для получения готового продукта (абсорбция SO3 в производстве серной кислоты, абсорбция HCl, оксидов азота водой в производстве азотной кислоты);
— для выделения ценных компонентов из газовых смесей (абсорбция бензола из коксового газа и др.), при этом абсорбцию проводят в сочетании с десорбцией;
— для очистки газовых выбросов от вредных примесей;
— для осушки газов.
Абсорбция теория скачать(126.77 Кб) скачиваний317 раз(а)
В работе изложены основы теории переноса массы, энергии и импульса, моделирование, рассмотрены гидромеханические, тепловые и массообменные процессы, а также машины и аппараты для их проведения.
Предназначены для студентов нефтяного факультета.
Конспекты лекций написаны в соответствии с рабочей программой, составленной с учетом требований Государственного образовательного стандарта высшего образования (второго поколения 2000г.) по направлениям 654900, 655100, 655300, 655500.
Теоретические основы ПАХТ скачать(244.43 Кб) скачиваний363 раз(а)
4. Тепловые процессы и аппараты
4.1 Теплообмен
4.1.1 Кондуктивный теплообмен в плоской стенке
4.1.2. Кондуктивный теплообмен в цилиндрической стенке.
4.1.3 Конвективный теплообмен в плоском пограничном слое и трубах при ламинарном и турбулентном режимах течения.
Теплообмен с телами сложной формы.
4.1.5. Теплообмен при изменении теплофизических характеристик теплоносителя и его фазового состояния.
4.1.6. Теплообмен при непосредственном контакте
теплоносителей.
4.1.7. Радиационно-конвективная теплоотдача.
Тепловое излучение.
Теплообмен при излучении.
Теплообмен лекции скачать(263.28 Кб) скачиваний404 раз(а)
Дисциплина «Процессы и аппараты химической технологии» (ПАХТ) является одной из фундаментальных общеинженерных дисциплин. Она является завершающей в общеинженерной подготовке студента и основополагающей в специальной подготовке.
Технология производства разнообразия химических продуктов и материалов включает ряд однотипных физических и физико-химических процессов, характеризуемых общими закономерностями. Эти процессы в различных производствах проводятся в аналогичных по принципу действия аппаратах. Процессы и аппараты, общие для разных отраслей химической промышленности, получили название основных процессы и аппаратов химической технологии.
Дисциплина ПАХТ состоит из двух частей:
теоретические основы химической технологии;
типовые процессы и аппараты химической технологии;
Лекции ПАХТ скачать(215.65 Кб) скачиваний379 раз(а)
Тепловые процессы в химическом машиностроении
Перенос энергии в форме тепла, происходящий между телами, имеющими различную температуру, называется теплообменом. Движущая сила любого процесса теплообмена — разность температур более и менее нагретого тел. При наличии такой разности тепло самопроизвольно, в соответствии со вторым законом термодинамики, переходит от более нагретого к менее нагретому телу. Теплообмен представляет собой обмен энергией между молекулами, атомами и свободными электронами. В результате теплообмена интенсивность движения частиц более нагретого тела снижается, а менее — возрастает.
Тела, участвующие в тпелообмене, называются теплоносителями.
Теплопередача — наука о процессах распространения тепла. Законы теплопередачи лежат в основе тепловых процессов и имеют большое значение для проведения многих массообменных и реакционных процессов химической технологии, протекающих с подводом или отводом тепла.
Тепловые процессы в химическом машиностроении скачать(30.86 Кб) скачиваний333 раз(а)